
PyQwt Documentation
Release 5.2.1

Gerard Vermeulen

July 18, 2010

CONTENTS

1 Introduction 1
1.1 NumPy . 1
1.2 Qwt . 2
1.3 PyQwt with NumPy . 2
1.4 Getting help . 4

2 Installation 5
2.1 Source Code Installation . 5

3 PyQwt Reference Guide 9
3.1 PyQt4.Qwt5 . 9
3.2 PyQt4.Qwt5.qplt . 16
3.3 PyQt4.Qwt5.grace . 18

4 Copyright 19

5 Indices and Tables 21

Python Module Index 23

Index 25

i

ii

CHAPTER

ONE

INTRODUCTION

PyQwt is a set of Python bindings for the Qwt library featuring fast plotting of Python lists and tuples and the
powerful multi-dimensional arrays provided by NumPy, the fundamental package for efficient scientific and engi-
neering computing in Python. 1

1.1 NumPy

The NumPy package extends Python with multi-dimensional arrays and a complete set of ‘standard’ functions
and operators to manipulate the arrays. NumPy turns Python into is an ideal language experimental numerical and
scientific computing (as powerful as APL, MatLab, IDL and others, but much more elegant).

If you do not have a mathematical background, you can think of a 1-dimensional array as a column in a spread-
sheet. The spreadsheet lets you change whole columns element by element in one single statement. In a similar
way, NumPy lets you change whole arrays element by element in one single statement as illustrated by the fol-
lowing snippet:

>>> import numpy as np
>>> x = np.arange(0.0, 10.0, 3.0)
>>> y = np.sin(x)
>>> x
array([0., 3., 6., 9.])
>>> y
array([0. , 0.14112001, -0.2794155 , 0.41211849])
>>> x*x
array([0., 9., 36., 81.])

The statement:

>>> np.arange(0.0, 10.0, 3.0)

returns a NumPy array of 4 equidistant points from 0 to 9 inclusive:

array([0., 3., 6., 9.])

The statements y = np.sin(x) and x*x show that NumPy arrays are manipulated element by element. All
this in has been coded in C, for a manifold speedup with respect to pure Python.

You can think of a 2-dimension array as a spreadsheet: in both cases you you can operate on blocks, columns,
rows, slices of colums, slices of rows or individual elements.

Want to learn more? Look at the Tentative NumPy Tutorial for a tutorial or at the Guide to NumPy for an advanced
book.

1 The older numerical Python extension packages, numarray and Numeric are deprecated.

1

http://qwt.sourceforge.net
http://numpy.scipy.org
http://numpy.scipy.org
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.tramy.us/numpybook.pdf
http://www.stsci.edu/resources/software_hardware/numarray
http://numpy.scipy.org/

PyQwt Documentation, Release 5.2.1

1.2 Qwt

Qwt is a C++ library based on the Qt GUI framework. The Qwt library contains widgets useful for writing
technical, scientific, and financial programs. It includes the following widgets:

QwtCompass a very fancy QDial-like widget to display and control a direction.

QwtCounter a QSpinBox-like widget to display and control a bounded floating point value.

QwtDial a QDial-like widget to display and control a floating point value.

QwtKnob a potentiometer-like widget to display and control a bounded floating point value.

QwtPlot a widget to plot data in two dimensions.

QwtSlider a QSlider-like widget to display and control a bounded floating point value.

QwtThermo a thermometer-like widget to display a floating point value.

QwtWheel a wheel-like widget with its axis parallel to the computer screen to control a floating point value over
a very large range in very small steps.

See the Qwt manual for a complete overview of the Qwt library.

1.3 PyQwt with NumPy

PyQwt is mostly used to write graphical user interface applications. However, the following snippet shows how to
use PyQwt in combination with NumPy from the command line interpreter. Line by line explanations follow the
snippet:

>>> import numpy as np
>>> from PyQt4.Qt import *
>>> from PyQt4.Qwt5 import *
>>> from PyQt4.Qwt5.qplt import *
>>> application = QApplication([])
>>> x = np.arange(-2*np.pi, 2*np.pi, 0.01)
>>> p = Plot(
... Curve(x, np.cos(x), Pen(Magenta, 2), "cos(x)"),
... Curve(x, np.exp(x), Pen(Red), "exp(x)", Y2),
... Axis(Y2, Log),
... "PyQwt using Qwt-%s -- http://qwt.sf.net" % QWT_VERSION_STR)
>>> QPixmap.grabWidget(p).save(’cli-plot-1.png’, ’PNG’)
True
>>> x = x[0:-1:10]
>>> p.plot(
... Curve(x, np.cos(x-np.pi/4), Symbol(Circle, Yellow), "circle"),
... Curve(x, np.cos(x+np.pi/4), Pen(Blue), Symbol(Square, Cyan), "square"))
>>> QPixmap.grabWidget(p).save(’cli-plot-2.png’, ’PNG’)
True

The statements:

>>> import numpy as np
>>> from PyQt4.Qt import *
>>> from PyQt4.Qwt5 import *
>>> from PyQt4.Qwt5.qplt import *

import numpy, PyQt4, Qwt5 and qplt. The statement:

>>> application = QApplication([])

initializes and starts the Qt library so that it handles mouse movements, mouse button presses, and keyboard key
presses. The statement:

2 Chapter 1. Introduction

http://qwt.sourceforge.net
http://trolltech.com/products/qt
http://qwt.sourceforge.net

PyQwt Documentation, Release 5.2.1

>>> x = np.arange(-2*np.pi, 2*np.pi, 0.01)

creates an array with elements increasing from -2*np.pi to 2*np.pi in steps of 0.01. The statement:

>>> p = Plot(
... Curve(x, np.cos(x), Pen(Magenta, 2), "cos(x)"),
... Curve(x, np.exp(x), Pen(Red), "exp(x)", Y2),
... Axis(Y2, Log),
... "PyQwt using Qwt-%s -- http://qwt.sf.net" % QWT_VERSION_STR)

creates and shows a plot widget with two curves and an additional right vertical logarithmic axis. The statement:

>>> QPixmap.grabWidget(p).save(’cli-plot-1.png’, ’PNG’)
True

takes a snapshot of the plot widget and saves it into a file:

The statement:

>>> x = x[0:-1:10]

creates a new array from the old one by selecting every tenth element start from the index 0. The statement:

>>> p.plot(
... Curve(x, np.cos(x-np.pi/4), Symbol(Circle, Yellow), "circle"),
... Curve(x, np.cos(x+np.pi/4), Pen(Blue), Symbol(Square, Cyan),
... "square"))

plots two new curves on the widget using the new array. The statement:

>>> QPixmap.grabWidget(p).save(’cli-plot-2.png’, ’PNG’)
True

takes a snapshot of the plot widget and saves it into a file:

1.3. PyQwt with NumPy 3

PyQwt Documentation, Release 5.2.1

1.4 Getting help

PyQwt has a low volume mailing list to answer questions on installation problems and how to use the more
advanced features. In particular, many of the more advanced examples using object oriented programming have
been written to answer questions. Most questions help to improve PyQwt!

Please, subscribe to the mailing list before posting on the mailing list.

The mailing list is a subscribers only list and mail from non-subscribers is deferred to filter spam (more than 95
% of the mail by non-subscribers is spam and mail by non-subscribers is rejected).

The mailing list is configured to garantee anonimity as much as possible.

4 Chapter 1. Introduction

http://lists.sourceforge.net/lists/listinfo/pyqwt-users
mailto:pyqwt-users@lists.sourceforge.net

CHAPTER

TWO

INSTALLATION

2.1 Source Code Installation

2.1.1 Build Prerequisites

Recommended build prerequisites for PyQwt-5.2.1 are:

1. Python, version 3.1.x, 2.7.x, 2.6.x, and 2.5.x are supported.

2. Qt, version 4.6.x, 4.5.x, 4.4.x, and 3.3.x are supported.

3. SIP, version 4.10.x is supported.

4. PyQt for Mac OS X, Windows, and/or X11, version 4.7.x, and 3.18.x are supported.

5. optionally NumPy, version 1.4.x, 1.3.x, and 1.2.x are supported. You will need to check out NumPy from
subversion when you want to use NumPy with Python-3.x.

6. optionally Qwt, version 5.2.x, 5.1.x, and 5.0.x are supported.

The source package PyQwt-5.2.1.tar.gz contains a snapshot of the Qwt-5.2 subversion bug fix branch which may
fix some bugs in Qwt-5.2.1. I recommend to compile and link the bug fix branch statically into PyQwt.

To exploit the full power of PyQwt, you should install at least one of the numerical Python extensions:

• NumPy

• numarray

• Numeric

and built PyQwt with support for the numerical Python extension(s) of your choice. However, only NumPy is
actively developed and numarray and Numeric are deprecated.

PyQwt-5.2.1 and recent versions of the numerical Python extensions support the N-D array interface protocol.
Therefore, PyQwt supports those extensions, even if they have not been installed when PyQwt has been built. In
this case, the functionality is somewhat reduced, since conversion from an QImage to a Numerical Python array
is not supported.

2.1.2 Installation

The installation procedure consists of three steps:

1. Unpack PyQwt-5.2.1.tar.gz.

2. Invoke the following commands to build PyQwt-5.2.1 for Qt-4:

cd PyQwt-5.2.1
cd configure
python configure.py -Q ../qwt-5.2

5

http://www.python.org
http://trolltech.com/products/qt
http://www.riverbankcomputing.co.uk/software/sip/intro
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://www.scipy.org/NumPy
http://qwt.sourceforge.net
http://prdownloads.sourceforge.net/pyqwt/PyQwt-5.2.1.tar.gz
http://www.scipy.org/NumPy
http://www.stsci.edu/resources/software_hardware/numarray
http://numpy.scipy.org/
http://numpy.scipy.org/array_interface.shtml

PyQwt Documentation, Release 5.2.1

make
make install

or invoke the commands to build PyQwt-5.2.1 for Qt-3:

cd PyQwt-5.2.1
cd configure
python configure.py -3 -Q ../qwt-5.2
make
make install

This assumes that the correct Python interpreter is on your path. Replace make by nmake, if you use
Microsoft Visual C++. The commands build PyQwt against the included Qwt subversion snapshot and
install PyQwt. Test the installation by playing with the example programs.

3. Fine tune (optional):

• to use a Qwt library already installed on your system invoke commands similar to:

python configure.py -I/usr/include/qwt -lqwt
make
make install

where the Qwt header files are assumed to be installed in /usr/include/qwt.

If the linker fails to find the qwt library, add:

-L /directory/with/qwt/library

to the configure.py options.

The configure.py script takes many options. The command:

python configure.py -h

displays a full list of the available options

Usage: python configure.py [options]

Each option takes at most one argument, but some options
accumulate arguments when repeated. For example, invoke:

python configure.py -I . -I ..

to search the current *and* parent directories for headers.

Options:
-h, --help show this help message and exit

Common options:
-3, --qt3 build for Qt3 and PyQt [default Qt4]
-4, --qt4 build for Qt4 and PyQt4 [default Qt4]
-Q /sources/of/qwt, --qwt-sources=/sources/of/qwt

compile and link the Qwt source files in
/sources/of/qwt statically into PyQwt

-I /usr/lib/qt3/include/qwt, --extra-include-dirs=/usr/lib/qt3/include/qwt
add an extra directory to search for headers (the
compiler must be able to find the Qwt headers without
the -Q option)

-L /usr/lib/qt3/lib, --extra-lib-dirs=/usr/lib/qt3/lib
add an extra directory to search for libraries (the
linker must be able to find the Qwt library without
the -Q option)

-j N, --jobs=N concatenate the SIP generated code into N files
[default 1 per class] (to speed up make by running
simultaneous jobs on multiprocessor systems)

6 Chapter 2. Installation

PyQwt Documentation, Release 5.2.1

Make options:
--debug enable debugging symbols [default disabled]
--extra-cflags=EXTRA_CFLAG

add an extra C compiler flag
--extra-cxxflags=EXTRA_CXXFLAG

add an extra C++ compiler flag
-D HAS_EXTRA_SENSORY_PERCEPTION, --extra-defines=HAS_EXTRA_SENSORY_PERCEPTION

add an extra preprocessor definition
-l extra_sensory_perception, --extra-libs=extra_sensory_perception

add an extra library
--extra-lflags=EXTRA_LFLAG

add an extra linker flag

SIP options:
-x EXTRA_SENSORY_PERCEPTION, --excluded-features=EXTRA_SENSORY_PERCEPTION

add a feature for SIP to exclude (normally one of the
features in sip/features.sip)

-t EXTRA_SENSORY_PERCEPTION, --timelines=EXTRA_SENSORY_PERCEPTION
add a timeline option for SIP (normally one of the
timeline options in sip/timelines.sip)

--sip-include-dirs=SIP_INCLUDE_DIR
add an extra directory for SIP to search

--trace enable trace of the execution of the bindings [default
disabled]

Detection options:
--disable-numarray disable detection and use of numarray [default

enabled]
--disable-numeric disable detection and use of Numeric [default enabled]
--disable-numpy disable detection and use of NumPy [default enabled]

Install options:
--module-install-path=MODULE_INSTALL_PATH

specify the install directory for the Python modules

2.1.3 Troubleshooting and getting help

1. Check whether all development packages have been installed when make produces lots of errors on Linux.

2. If you fail to install PyQwt, unpack PyQwt-5.2.1.tar.gz into a clean directory and create two log files con-
taining stdout and stderr:

python configure.py --your --options 2&>1 >configure.log
make 2&>1 >make.log

Send the log files to the mailing list after subscribing to the mailing list, because the mailing list is for
subscribers only, see Getting help.

2.1. Source Code Installation 7

mailto:pyqwt-users@lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/pyqwt-users

PyQwt Documentation, Release 5.2.1

8 Chapter 2. Installation

CHAPTER

THREE

PYQWT REFERENCE GUIDE

3.1 PyQt4.Qwt5

The reference should be used in conjunction with the Qwt manual. Only the differences specific to the Python
bindings are documented here.

In this chapter, is not yet implemented implies that the feature can be easily implemented if needed, is not
implemented implies that the feature is not easily implemented, and is not Pythonic implies that the feature will
not be implemented because it violates the Python philosophy (e.g. may use dangling pointers).

If a class is described as being is fully implemented then all non-private member functions and all public class
variables have been implemented.

Undocumented classes have not yet been implemented or are still experimental.

3.1.1 Class reference

class QwtAbstractScale
is fully implemented.

class QwtAbstractScaleDraw
is fully implemented.

class QwtAbstractSlider
is fully implemented.

class QwtAlphaColorMap
is fully implemented.

class QwtArrayData
is fully implemented.

class QwtArrayDouble
is fully implemented. See Template reference.

class QwtArrayInt
is fully implemented. See Template reference.

class QwtArrayQwtDoubleInterval
is fully implemented. See Template reference.

class QwtArrayQwtDoublePoint
is fully implemented. See Template reference.

class QwtArrowButton
is fully implemented.

class QwtClipper
is fully implemented, but only available when PyQwt wraps Qwt-5.1.x.

9

http://qwt.sourceforge.net

PyQwt Documentation, Release 5.2.1

class QwtColorMap
is fully implemented.

class QwtCompass
is fully implemented.

class QwtCompassMagnetNeedle
is fully implemented.

class QwtCompassRose
is fully implemented.

class QwtCompassWindArrow
is fully implemented.

class QwtCounter
is fully implemented.

class QwtCurveFitter
is fully implemented.

class QwtData
is fully implemented.

class QwtDial
is fully implemented.

class QwtDialNeedle
is fully implemented.

class QwtDialScaleDraw
is fully implemented.

class QwtDialSimpleNeedle
is fully implemented.

class QwtDoubleInterval
is fully implemented.

class QwtDoublePoint
is fully implemented, but only available when PyQt wraps Qt-3. When PyQt wraps Qt-4, replace this class
with QPointF except in signals. For example, clicking in the canvas of the plot displayed by the following
program:

#!/usr/bin/env python

import sys
from PyQt4 import Qt
import PyQt4.Qwt5 as Qwt

def aSlot(aQPointF):
print ’aSlot gets:’, aQPointF

aSlot()

def make():
demo = Qwt.QwtPlot()
picker = Qwt.QwtPlotPicker(Qwt.QwtPlot.xBottom,

Qwt.QwtPlot.yLeft,
Qwt.QwtPicker.PointSelection,
Qwt.QwtPlotPicker.CrossRubberBand,
Qwt.QwtPicker.AlwaysOn,
demo.canvas())

picker.connect(
picker, Qt.SIGNAL(’selected(const QwtDoublePoint&)’), aSlot)

return demo

10 Chapter 3. PyQwt Reference Guide

PyQwt Documentation, Release 5.2.1

make()

def main(args):
app = Qt.QApplication(args)
demo = make()
demo.show()
sys.exit(app.exec_())

main()

if __name__ == ’__main__’:
main(sys.argv)

Local Variables: ***
mode: python ***
End: ***

shows that the signal returns an object of type QPointF:

aSlot gets: <PyQt4.QtCore.QPointF object at 0x2aaaaf73be20>

class QwtDoubleRange
is fully implemented.

class QwtDoubleRect
is fully implemented, but only available when PyQt wraps Qt-3.

When PyQt wraps Qt-4, replace this class with QRectF except in signals: see QwtDoublePoint.

class QwtDoubleSize
is fully implemented, but only available when PyQt wraps Qt-3.

When PyQt wraps Qt-4, replace this class with QSizeF except in signals: see QwtDoublePoint.

class QwtDynGridLayout
is fully implemented.

class QwtEventPattern
is fully implemented.

class QwtIntervalData
is fully implemented.

class QwtKnob
is fully implemented.

class QwtLegend
is fully implemented.

class QwtLegendItem
is fully implemented.

class QwtLegendItemManager
is fully implemented, but only available when PyQwt wraps Qwt-5.1.x.

class QwtLinearColorMap
is fully implemented.

class QwtLinearScaleEngine
is fully implemented.

class QwtLog10ScaleEngine
is fully implemented.

class QwtLegendMagnifier
is fully implemented, but only available when PyQwt wraps Qwt-5.1.x.

3.1. PyQt4.Qwt5 11

PyQwt Documentation, Release 5.2.1

class QwtMetricsMap
is fully implemented.

class QwtPaintBuffer
is fully implemented when PyQt wraps Qt-3.

class QwtPainter
is fully implemented.

class QwtPanner
is fully implemented.

class QwtPicker
is fully implemented.

class QwtPickerClickPointMachine
is fully implemented.

class QwtPickerClickRectMachine
is fully implemented.

class QwtPickerDragPointMachine
is fully implemented.

class QwtPickerDragRectMachine
is fully implemented.

class QwtPickerMachine
is fully implemented.

class QwtPickerPolygonMachine
is fully implemented.

class QwtPlainTextEngine
is fully implemented.

class QwtPlot
is fully implemented, but:

void QwtPlot::print(QPrinter& printer, const QwtPlotPrintFilter& filter)
is implemented as:

plot.print_(printer, filter)

void QwtPlot::print(QPainter* painter, const QRect& rect, const QwtPlotPrintFilter& filter)
is implemented as:

plot.print_(painter, rect, filter)

class QwtPlotCanvas
is fully implemented.

class QwtPlotCurve
is fully implemented, but:

void QwtPlotCurve::setData(double* x, double* y, int size)
is implemented as:

curve.setData(x, y)

where x and y can be any combination of lists, tuples and Numerical Python arrays. The data is copied
to C++ data types.

void QwtPlotCurve::setRawData(double* x, double* y, int size)
is not Pythonic.

class QwtPlotDict
is fully implemented. FIXME: is the auto delete feature dangerous?

12 Chapter 3. PyQwt Reference Guide

PyQwt Documentation, Release 5.2.1

class QwtPlotGrid
is fully implemented.

class QwtPlotItem
is fully implemented.

class QwtPlotLayout
is fully implemented.

class QwtPlotMagnifier
is fully implemented.

class QwtPlotMarker
is fully implemented.

class QwtPlotPanner
is fully implemented.

class QwtPlotPicker
is fully implemented, but:

QwtText QwtPlotPicker::trackerText(QwtDoublePoint& point)
is implemented as:

qwtText = plotPicker.trackerText(point)

where point is a QwtDoublePoint when PyQt wraps Qt-3 or a QPointF when PyQt wraps Qt-4.

class QwtPlotPrintFilter
is fully implemented.

class QwtPlotRasterItem
is fully implemented.

class QwtPlotScaleItem
is fully implemented, but only available when PyQwt wraps Qwt-5.1.x.

class QwtPlotSpectrogram
The protected member functions

QMap<double, QPolygonF> QwtPlotSpectogram::renderContourLines(const Qwt-
DoubleRect&,
const
QSize& const)

and

void QwtPlotSpectogram::drawContourLines(QPainter*, const QwtScaleMap&, const
QwtScaleMap&, const QMap<double,
QPolygonF>& const)

are not yet implemented.

class QwtPlotSvgItem
is fully implemented.

class QwtPlotZoomer
is fully implemented.

class QwtPolygon
When PyQt wraps Qt-3, replace this class with QPointArray except in signals: see QwtDoublePoint.

When PyQt has been built for Qt-4, replace this class with QPolygon except in signals: see
QwtDoublePoint.

class QwtPolygonFData
is fully implemented.

class QwtRasterData
is fully implemented.

3.1. PyQt4.Qwt5 13

PyQwt Documentation, Release 5.2.1

class QwtRect
is fully implemented.

class QwtRichTextEngine
is fully implemented.

class QwtRoundScaleDraw
is fully implemented.

class QwtScaleArithmic
is fully implemented.

class QwtScaleDiv

QwtScaleDiv::QwtScaleDiv(const QwtDoubleInterval&, QwtValueList*)
is implemented as:

scaleDiv = QwtScaleDiv(
qwtDoubleInterval, majorTicks, mediumTicks, minorTicks)

QwtScaleDiv::QwtScaleDiv(double, double, QwtTickList*)
is implemented as:

scaleDiv = QwtScaleDiv(
lower, upper, majorTicks, mediumTicks, minorTicks)

class QwtScaleDraw
is fully implemented.

class QwtScaleEngine
is fully implemented.

class QwtScaleMap
is fully implemented.

QwtScaleMap::QwtScaleMap(int, int, double, double)
does not exist in C++, but is provided by PyQwt.

class QwtScaleTransformation
is fully implemented.

class QwtScaleWidget
is fully implemented.

class QwtSimpleCompassRose
is fully implemented.

class QwtSlider
is fully implemented.

class QwtSpline
is fully implemented.

class QwtSplineCurveFitter
is fully implemented.

class QwtSymbol
is fully implemented.

class QwtText
is fully implemented.

class QwtTextEngine
is fully implemented.

class QwtTextLabel
is fully implemented.

14 Chapter 3. PyQwt Reference Guide

PyQwt Documentation, Release 5.2.1

class QwtThermo
is fully implemented.

class QwtWheel
is fully implemented.

3.1.2 Function reference

toImage(array)
Convert array to a QImage, where array must be a 2D NumPy, numarray, or Numeric array containing data
of type uint8 or uin32.

toNumarray(image)
Convert image to a 2D numarray array, where image must be a QImage with depth 8 or 32. The resulting
2D numarray array contains data of type uint8 or uint32.

toNumeric(image)
Convert image to a 2D Numeric array, where image must be a QImage of depth 8 or 32. The resulting 2D
Numeric array contains data of type uint8 or uint32.

toNumpy(image)
Convert image to a 2D NumPy array, where image must be a QImage of depth 8 or 32. The resulting 2D
NumPy array contains data of type uint8 or uint32.

to_na_array(image)
Deprecated. Use toNumarray().

to_np_array(image)
Deprecated. Use toNumeric().

3.1.3 Template reference

PyQwt has a partial interface to the following QwtArray<T> templates:

1. QwtArrayDouble for QwtArray<double>

2. QwtArrayInt for QwtArray<int>

3. QwtArrayQwtDoubleInterval for QwtArray<QwtDoubleInterval>

4. QwtArrayQwtDoublePoint for QwtArray<QwtDoublePoint> when PyQt has been built against Qt-3
or for QwtArray<QPointF> when PyQt has been built against Qt-4.

Those classes have at least 3 constructors, taking QwtArrayDouble as an example:

1. array = QwtArrayDouble()

2. array = QwtArrayDouble(int)

3. array = QwtArrayDouble(otherArray)

QwtArrayDouble and QwtArrayInt have also a constructor which takes a sequence of items convertable to
a C++ double and a C++ long. For instance:

• array = QwtArrayDouble(numpy.array([0.0, 1.0]))

• array = QwtArrayInt(numpy.array([0, 1]))

All those classes have 16 member functions, taking QwtArrayDouble as example:

1. array = array.assign(otherArray)

2. item = array.at(index)

3. index = array.bsearch(item)

4. index = contains(item)

3.1. PyQt4.Qwt5 15

PyQwt Documentation, Release 5.2.1

5. array = otherArray.copy()

6. result = array.count()

7. array.detach()

8. array = array.duplicate(otherArray)

9. bool = array.fill(item, index=-1)

10. index = array.find(item, index=0)

11. bool = array.isEmpty()

12. bool = array.isNull()

13. bool = array.resize(index)

14. result = array.size()

15. array.sort()

16. bool = array.truncate(index)

Iterators are not yet implemented. However, the implementation of the special class methods __getitem__,
__len__ and __setitem__ let you use those classes almost as a sequence. For instance:

>>> from PyQt4.Qwt5 import *
>>> import numpy as np
>>> a = QwtArrayDouble(np.arange(10, 20, 4))
>>> for i in a: # thanks to __getitem__
... print i
...
10.0
14.0
18.0
>>> for i in range(len(a)): # thanks to __len__
... print a[i] # thanks to __getitem__
...
10.0
14.0
18.0
>>> for i in range(len(a)): # thanks to __len__
... a[i] = 10+3*i # thanks to __setitem__
...
>>> for i in a: # thanks to __getitem__
... print i
...
10.0
13.0
16.0

3.2 PyQt4.Qwt5.qplt

Provides a command line interpreter friendly layer over QwtPlot. An example of its use is:

>>> import numpy as np
>>> from PyQt4.Qt import *
>>> from PyQt4.Qwt5 import *
>>> from PyQt4.Qwt5.qplt import *
>>> application = QApplication([])
>>> x = np.arange(-2*np.pi, 2*np.pi, 0.01)
>>> p = Plot(
... Curve(x, np.cos(x), Pen(Magenta, 2), ’cos(x)’),
... Curve(x, np.exp(x), Pen(Red), ’exp(x)’, Y2),

16 Chapter 3. PyQwt Reference Guide

PyQwt Documentation, Release 5.2.1

... Axis(Y2, Log),

... ’PyQwt using Qwt-%s -- http://qwt.sf.net’ % QWT_VERSION_STR)
>>> QPixmap.grabWidget(p).save(’cli-plot-1.png’, ’PNG’)
True
>>> x = x[0:-1:10]
>>> p.plot(
... Curve(x, np.cos(x-np.pi/4), Symbol(Circle, Yellow), ’circle’),
... Curve(x, np.cos(x+np.pi/4), Pen(Blue), Symbol(Square, Cyan), ’square’))
>>> QPixmap.grabWidget(p).save(’cli-plot-2.png’, ’PNG’)
True

class Axis(*rest)
A command line interpreter friendly class.

The interpretation of the *rest parameters is type dependent:

•QwtPlot.Axis: sets the orientation of the axis.

•QwtScaleEngine: sets the axis type (Lin or Log).

•int : sets the attributes of the axis.

•string or QString: sets the title of the axis.

class Curve(x, y, *rest)
A command line friendly layer over QwtPlotCurve.

Parameters:

•x: sequence of numbers

•y: sequence of numbers

The interpretation of the *rest parameters is type dependent:

•Axis: attaches an axis to the curve.

•Pen: sets the pen to connect the data points.

•Symbol: sets the symbol to draw the data points.

•str, QString, or QwtText: sets the curve title.

class IPlot(*rest)
A QMainWindow widget with a Plot widget as central widget. It provides:

1.a toolbar for printing and piping into Grace.

2.a legend with control to toggle curves between hidden and shown.

3.mouse tracking to display the coordinates in the status bar.

4.an infinite stack of zoom regions.

The interpretation of the rest parameters is type dependent:

•Axis: enables the axis.

•Curve: adds a curve.

•str or QString: sets the title.

•int: sets a set of mouse events to the zoomer actions.

•(int, int): sets the size.

class Pen(*rest)
A command line friendly layer over QPen.

The interpretation of the *rest parameters is type dependent:

•Qt.PenStyle: sets the pen style.

3.2. PyQt4.Qwt5.qplt 17

PyQwt Documentation, Release 5.2.1

•QColor or Qt.GlobalColor: sets the pen color.

•int: sets the pen width.

class Plot(*rest)
A command line interpreter friendly layer over QwtPlot.

The interpretation of the *rest parameters is type dependent:

•Axis: enables the axis.

•Curve: adds a curve.

•str or QString: sets the title.

•int: sets a set of mouse events to the zoomer actions.

•(int, int): sets the size.

•QWidget: sets the parent widget

clearZoomStack()
Force autoscaling and clear the zoom stack

formatCoordinates(x, y)
Format mouse coordinates as real world plot coordinates.

gracePlot(saveall=’‘, pause=0.2)
Clone the plot into Grace for very high quality hard copy output.

Know bug: Grace does not scale the data correctly when Grace cannot cannot keep up with gracePlot.
This happens when it takes too long to load Grace in memory (exit the Grace process and try again)
or when ‘pause’ is too short.

plot(*rest)
Plot additional curves and/or axes.

The interpretation of the *rest parameters is type dependent:

•Axis: enables the axis.

•Curve: adds a curve.

setZoomerMouseEventSet(index)
Attach the Qwt.QwtPlotZoomer actions to a set of mouse events.

toggleVisibility(plotItem)
Toggle the visibility of a plot item

class Symbol(*rest)
A command line friendly layer over QwtSymbol.

The interpretation of the *rest parameters is type dependent:

•QColor or Qt.GlobalColor: sets the symbol fill color.

•QwtSymbol.Style: sets symbol style.

•int: sets the symbol size.

3.3 PyQt4.Qwt5.grace

class GraceProcess(debug=None)
Provides a simple interface to a Grace subprocess.

18 Chapter 3. PyQwt Reference Guide

CHAPTER

FOUR

COPYRIGHT

Copyright © 2001-2010 Gerard Vermeulen

Copyright © 2000 Mark Colclough

PyQwt is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

PyQwt is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the im-
plied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with PyQwt; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

In addition, as a special exception, Gerard Vermeulen gives permission to link PyQwt dynamically with non-free
versions of Qt and PyQt, and to distribute PyQwt in this form, provided that equally powerful versions of Qt and
PyQt have been released under the terms of the GNU General Public License.

If PyQwt is dynamically linked with non-free versions of Qt and PyQt, PyQwt becomes a free plug-in for a
non-free program.

19

PyQwt Documentation, Release 5.2.1

20 Chapter 4. Copyright

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

21

PyQwt Documentation, Release 5.2.1

22 Chapter 5. Indices and Tables

PYTHON MODULE INDEX

p
PyQt4.Qwt5, 9
PyQt4.Qwt5.grace, 18
PyQt4.Qwt5.qplt, 16

23

PyQwt Documentation, Release 5.2.1

24 Python Module Index

INDEX

A
Axis (class in PyQt4.Qwt5.qplt), 17

C
clearZoomStack() (Plot method), 18
Curve (class in PyQt4.Qwt5.qplt), 17

F
formatCoordinates() (Plot method), 18

G
gracePlot() (Plot method), 18
GraceProcess (class in PyQt4.Qwt5.grace), 18

I
IPlot (class in PyQt4.Qwt5.qplt), 17

P
Pen (class in PyQt4.Qwt5.qplt), 17
Plot (class in PyQt4.Qwt5.qplt), 18
plot() (Plot method), 18
PyQt4.Qwt5 (module), 9
PyQt4.Qwt5.grace (module), 18
PyQt4.Qwt5.qplt (module), 16

Q
QwtAbstractScale (class in PyQt4.Qwt5), 9
QwtAbstractScaleDraw (class in PyQt4.Qwt5), 9
QwtAbstractSlider (class in PyQt4.Qwt5), 9
QwtAlphaColorMap (class in PyQt4.Qwt5), 9
QwtArrayData (class in PyQt4.Qwt5), 9
QwtArrayDouble (class in PyQt4.Qwt5), 9
QwtArrayInt (class in PyQt4.Qwt5), 9
QwtArrayQwtDoubleInterval (class in PyQt4.Qwt5), 9
QwtArrayQwtDoublePoint (class in PyQt4.Qwt5), 9
QwtArrowButton (class in PyQt4.Qwt5), 9
QwtClipper (class in PyQt4.Qwt5), 9
QwtColorMap (class in PyQt4.Qwt5), 9
QwtCompass (class in PyQt4.Qwt5), 10
QwtCompassMagnetNeedle (class in PyQt4.Qwt5), 10
QwtCompassRose (class in PyQt4.Qwt5), 10
QwtCompassWindArrow (class in PyQt4.Qwt5), 10
QwtCounter (class in PyQt4.Qwt5), 10
QwtCurveFitter (class in PyQt4.Qwt5), 10
QwtData (class in PyQt4.Qwt5), 10

QwtDial (class in PyQt4.Qwt5), 10
QwtDialNeedle (class in PyQt4.Qwt5), 10
QwtDialScaleDraw (class in PyQt4.Qwt5), 10
QwtDialSimpleNeedle (class in PyQt4.Qwt5), 10
QwtDoubleInterval (class in PyQt4.Qwt5), 10
QwtDoublePoint (class in PyQt4.Qwt5), 10
QwtDoubleRange (class in PyQt4.Qwt5), 11
QwtDoubleRect (class in PyQt4.Qwt5), 11
QwtDoubleSize (class in PyQt4.Qwt5), 11
QwtDynGridLayout (class in PyQt4.Qwt5), 11
QwtEventPattern (class in PyQt4.Qwt5), 11
QwtIntervalData (class in PyQt4.Qwt5), 11
QwtKnob (class in PyQt4.Qwt5), 11
QwtLegend (class in PyQt4.Qwt5), 11
QwtLegendItem (class in PyQt4.Qwt5), 11
QwtLegendItemManager (class in PyQt4.Qwt5), 11
QwtLegendMagnifier (class in PyQt4.Qwt5), 11
QwtLinearColorMap (class in PyQt4.Qwt5), 11
QwtLinearScaleEngine (class in PyQt4.Qwt5), 11
QwtLog10ScaleEngine (class in PyQt4.Qwt5), 11
QwtMetricsMap (class in PyQt4.Qwt5), 11
QwtPaintBuffer (class in PyQt4.Qwt5), 12
QwtPainter (class in PyQt4.Qwt5), 12
QwtPanner (class in PyQt4.Qwt5), 12
QwtPicker (class in PyQt4.Qwt5), 12
QwtPickerClickPointMachine (class in PyQt4.Qwt5),

12
QwtPickerClickRectMachine (class in PyQt4.Qwt5),

12
QwtPickerDragPointMachine (class in PyQt4.Qwt5),

12
QwtPickerDragRectMachine (class in PyQt4.Qwt5), 12
QwtPickerMachine (class in PyQt4.Qwt5), 12
QwtPickerPolygonMachine (class in PyQt4.Qwt5), 12
QwtPlainTextEngine (class in PyQt4.Qwt5), 12
QwtPlot (class in PyQt4.Qwt5), 12
QwtPlot::print (C++ function), 12
QwtPlotCanvas (class in PyQt4.Qwt5), 12
QwtPlotCurve (class in PyQt4.Qwt5), 12
QwtPlotCurve::setData (C++ function), 12
QwtPlotCurve::setRawData (C++ function), 12
QwtPlotDict (class in PyQt4.Qwt5), 12
QwtPlotGrid (class in PyQt4.Qwt5), 12
QwtPlotItem (class in PyQt4.Qwt5), 13
QwtPlotLayout (class in PyQt4.Qwt5), 13
QwtPlotMagnifier (class in PyQt4.Qwt5), 13

25

PyQwt Documentation, Release 5.2.1

QwtPlotMarker (class in PyQt4.Qwt5), 13
QwtPlotPanner (class in PyQt4.Qwt5), 13
QwtPlotPicker (class in PyQt4.Qwt5), 13
QwtPlotPicker::trackerText (C++ function), 13
QwtPlotPrintFilter (class in PyQt4.Qwt5), 13
QwtPlotRasterItem (class in PyQt4.Qwt5), 13
QwtPlotScaleItem (class in PyQt4.Qwt5), 13
QwtPlotSpectogram::drawContourLines (C++ func-

tion), 13
QwtPlotSpectogram::renderContourLines (C++ func-

tion), 13
QwtPlotSpectrogram (class in PyQt4.Qwt5), 13
QwtPlotSvgItem (class in PyQt4.Qwt5), 13
QwtPlotZoomer (class in PyQt4.Qwt5), 13
QwtPolygon (class in PyQt4.Qwt5), 13
QwtPolygonFData (class in PyQt4.Qwt5), 13
QwtRasterData (class in PyQt4.Qwt5), 13
QwtRect (class in PyQt4.Qwt5), 14
QwtRichTextEngine (class in PyQt4.Qwt5), 14
QwtRoundScaleDraw (class in PyQt4.Qwt5), 14
QwtScaleArithmic (class in PyQt4.Qwt5), 14
QwtScaleDiv (class in PyQt4.Qwt5), 14
QwtScaleDiv::QwtScaleDiv (C++ function), 14
QwtScaleDraw (class in PyQt4.Qwt5), 14
QwtScaleEngine (class in PyQt4.Qwt5), 14
QwtScaleMap (class in PyQt4.Qwt5), 14
QwtScaleMap::QwtScaleMap (C++ function), 14
QwtScaleTransformation (class in PyQt4.Qwt5), 14
QwtScaleWidget (class in PyQt4.Qwt5), 14
QwtSimpleCompassRose (class in PyQt4.Qwt5), 14
QwtSlider (class in PyQt4.Qwt5), 14
QwtSpline (class in PyQt4.Qwt5), 14
QwtSplineCurveFitter (class in PyQt4.Qwt5), 14
QwtSymbol (class in PyQt4.Qwt5), 14
QwtText (class in PyQt4.Qwt5), 14
QwtTextEngine (class in PyQt4.Qwt5), 14
QwtTextLabel (class in PyQt4.Qwt5), 14
QwtThermo (class in PyQt4.Qwt5), 14
QwtWheel (class in PyQt4.Qwt5), 15

S
setZoomerMouseEventSet() (Plot method), 18
Symbol (class in PyQt4.Qwt5.qplt), 18

T
to_na_array() (in module PyQt4.Qwt5), 15
to_np_array() (in module PyQt4.Qwt5), 15
toggleVisibility() (Plot method), 18
toImage() (in module PyQt4.Qwt5), 15
toNumarray() (in module PyQt4.Qwt5), 15
toNumeric() (in module PyQt4.Qwt5), 15
toNumpy() (in module PyQt4.Qwt5), 15

26 Index

	Introduction
	NumPy
	Qwt
	PyQwt with NumPy
	Getting help

	Installation
	Source Code Installation

	PyQwt Reference Guide
	PyQt4.Qwt5
	PyQt4.Qwt5.qplt
	PyQt4.Qwt5.grace

	Copyright
	Indices and Tables
	Python Module Index
	Index

